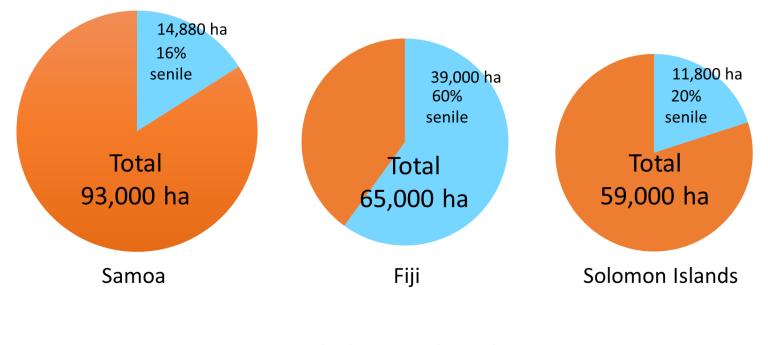


Objective 6

Determine the costs and benefits of using the residual cortex and soft, central cores for bio-char and other agricultural products.

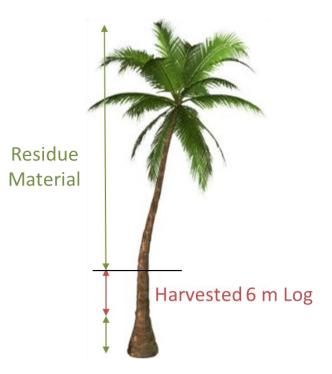
Coconut palm harvesting residues

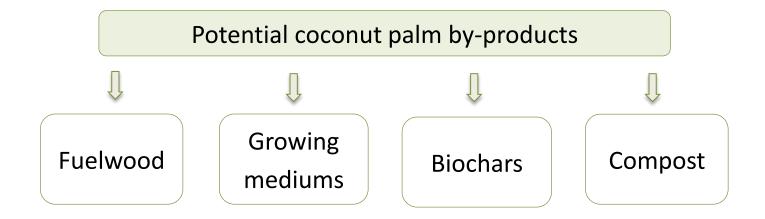
Palm selection for peeling trials


(Savusavu, Vanua Levu. Fiji. 2015)

Coconut log processing residues

(Labasa, Vanua Levu. Fiji. 2014)





% Senile Palms % Productive Palms

Estimated volume of harvesting residues - 20 hectare plantation, 60 year rotation

Postharvest Rotation Years	Fiji Solomon Islands Vol.m3 Vol.m3		Samoa Vol.m3
Immediate harvest	390	291	235
Year 5	351	369	235
Year 10	351	369	352
Year 15	351	369	352
Year 20	351	369	352
Year 25	351	369	352
Year 30	351	272	274
Year 35	351	272	274
Year 40	351	272	274
Year 45	351	233	274
Year 50	117	233	274
Year 55	117	233	274
Year 60	117	233	274

Objective 6 By-products – Fuelwood

Table 3. A comparison of the energy content of various fuel types used across the South Pacific Islands (derived from Mario, R. 2000)

	Fuel	Gigajoules per Tonne		
	Automotive Gasoline or Diesel	46		
	Liquid Petroleum Gas	49.4		
	Coconut Oil	38.4		
	Charcoal	30.0		
	Wood waste @ 40 % moisture content	10.8		
	Wood waste @ 12 % moisture content	17.1		
\leq	Coconut palm wood	11.5		
	Coconut shell and husk	14.0		
	Sugar bagasse	9.7		

Fuelwood

Objective 6 By-products – Fuelwood

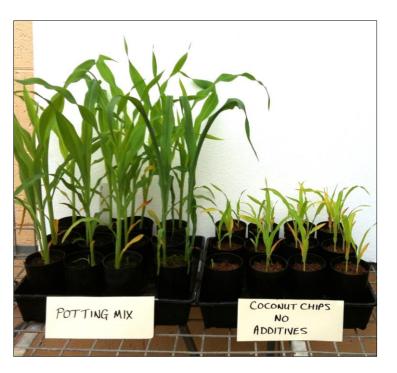
Objective 6 By-products – Fuelwood

A jet-box continuous veneer dryer processing 50,000 cubic metres of veneer a year requires a 16 MW biomass heatplant that would consume an estimated. 25,000 tonnes of biomass wood residue.

Growing mediums

Parameter	Cocowood (fine-ground)	Coir 1*	Coir 2*	Recommended range (Bodman and Sharman, 1993)
Air filled porosity	34.18%	16%	35%	5-20%
Water holding capacity	44.41%	35%	64%	>40%
Water retention efficiency	61.33%	46%	63%	No data
Wettability	55 seconds	<5 seconds	15 seconds	No data
Bulk density	0.09 (g/vol)	0.07	0.08	<1.2
рН	6.22	5.84	6.4	4.7-7
Electrical conductivity	1727mS/cm	629	2254 mS/cm	<700- 1800

T i D i i i		Sample 1 240393-Coconut Wood Chips	Requirment	Status	
Test Required: Australian Standard Applicable:		CA-PACK-007 Premium AS3743/2003	AS3743/2003		
Nutrient		Units	E3286/1	Potting Mix	
Air-filled Porosity		%	25	≥13	Pass
Total Water Holding Capa	city	%	42	≥50	Fail
Wettability		min	1m 20s	≤2	Pass
pH (1:1.5)		pH units	6.1	5.3 - 6.5	Pass
Electrical Conductivity (1:	1.5)	dS/m	5.4	≤2.2	Fail
Chloride	CI	mg/L	162	≤200	Pass
Ammonium	Ν	mg/L	2.75	≤100	Pass
Phosphorus	Р	mg/L	14	8 to 40	Pass
Potassium	к	mg/L	55	≥30	Pass
Sulfur	S	mg/L	8	≥40	Fail
Calcium	Ca	mg/L	28	≥80	Fail
Magnesium	Mg	mg/L	25	≥15	Pass
Ca:Mg Ratio		Ratio	1.1	1.5 to 10	Pass
K:Mg Ratio		Ratio	2.2	1 to 7	Pass
Sodium	Na	mg/L	511	≤130	Fail
Copper	Cu	mg/L	0.1	0.4 to 15	Fail
Zinc	Zn	mg/L	1.0	0.3 to 10	Pass
Manganese	Mn	mg/L	1.0	1 to 15	Pass
Boron	В	mg/L	0.07	0.02 to 0.65	Pass


Good mycellium growth through the substrate

Mushroom production, but very poor yields

By-products – Growing mediums

Plant growth trials were established to compare germination and growth rates of sweet corn

Biochars

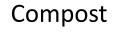
Biochars from the pyrolysis of coconut wood

Benefits from biochar are not universal
– Soil types respond differently
Applying biochar to soils in the Pacific
Islands may have beneficial effects

- Increased crop productivity through higher nutrient use efficiency
- A retention of nutrients limits nutrient leaching
- An increase in water-holding capacity
- A decrease in soil acidity

No statistically significant differences in mean corm weight between biochar treatments.

No consistent effects of initial feedstock, pyrolysis temperature, rate of biochar and priming.


Compost

Composting coconut palm log harvest residues could be particularly useful for most site rehabilitation options

Objective 6 By-products – Compost

CSAW has trial composted coconut woodchip on a garden-scale to examine end-product properties.

12 weeks

Objective 6 By-products – Compost

Aust. Std. AS3743:2003	Nutrient	Units	Value	Acceptable Range
Moisture Content		%	74	>40
Air-filled Porosity		%		?13
Total Water Holding Capacity		%		?40
Wettability		min		?5
pH (1:1.5)		pH units	7.3	5.3 to 6.5
Electrical Conductivity (1:1.5)		dS/m	1.62 5.4	4 ?2.2
Chloride	CI	mg/L	98	?200
Ammonium	Ν	mg/L	28.12	?100
NH4 + NO3	Ν	mg/L	3.8	
Nitrogen Drawdown Index		NDI		?0.2
Toxicity		mm		?70
Phosphorus	Р	mg/L	424	
Potassium	K	mg/L	824	?30
Sulfur	S	mg/L	86	
Calcium	Ca	mg/L	568	?50
Magnesium	Mg	mg/L	214	?15
Ca:Mg Ratio		Ratio	2.7	1.5 to 10
K:Mg Ratio		Ratio	3.9	1 to 7
Sodium	Na	mg/L	195 51	1 ?130
Iron	Fe	mg/L	10.3	?25
Copper	Cu	mg/L	1.96	0.4 to 15
Zinc	Zn	mg/L	22.8	0.3 to 10
Manganese	Mn	mg/L	14	1 to 15
Boron	В	mg/L	1.14	0.02 to 0.65

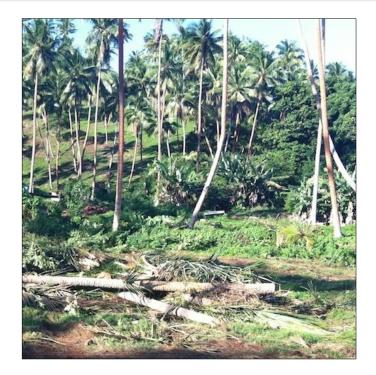
By-products – Compost

A second series of plant growth trials were established to again compare germination and growth rates of sweet corn and peas

By-products – Compost

Sweet corn and Pea growth trial results – mean dry weights

Treatment	Sweet Corn 9 weeks	Peas 6 weeks
Soil	12.53 g	1.87 g
Soil and CWC	16.77 g	4.93 g
Soil, CWC and biochar	22.13 g	-


Objective 6 By-products – In summary

	Fiji Vol.m3	Solomon Islands Vol.m3	Samoa Vol.m3
Average residue from 20 ha every 5-years	300	299	292
Total estate residue every 5-years	585 <i>,</i> 038	176,326	217,253
Total estate residue every year	117,008	35,265	43,451

By-products – Questions

