

Complexity in veneering

The key challenges include:

- Slicing the hard vascular bundles without undue damage to the surrounding soft matrix.
 - To manage surface coarseness & reduce sheet damage.
- Recovering useful material from small diameter logs.
- Accommodating varying density across the log.

Controlled spindleless lathe approaches offered a possible solution.

Conclusion on the best settings For the setting of discs to a temperature 80 °C for 1 hour. Cylindrical bar pressure Pressure sufficient for 10% veneer compression. The implementation on a production lathe requires a relatively large diameter, cylindrical nose bar in order to make the pressure more uniform.

Peeling trials - initial

Initial experimental peeling trial in Fiji

- Lathe performed well
- 23 logs (1.5 m3) processed, 249 veneer sheets produced.
- Around 60% recovery
- Supporting equipment problems: pretreatment chamber couldn't heat logs sufficiently!
- Veneer quality negatively impacted by:
 - Lack of log heating capacity.
 - Lack of opportunity to optimise lathe settings.

Advanced veneer and other product from coconut wood

VTB commercial peeling trial

VTB commercial peeling trial

Further peeling trials at TUD, Suva

Additional log heating capacity was installed.

Veneer grade recovery and quality through the log currently being assessed.

9

Peeling summary

The project has demonstrated that coconut palms can be rotary peeled using currently available spindle-less lathe technologies.

The project has identified:

- The recovered veneer has a wide range of qualities.
- To maximes its value:
 - Careful grading and segregation is needed to manage these.
 - Effective veneer grading systems need to be developed along the supply chain.

