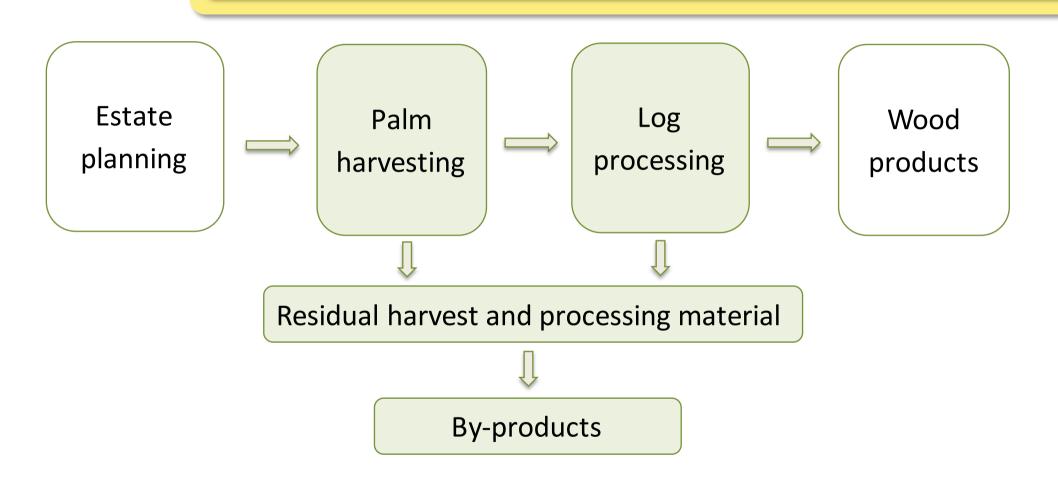


CocoVeneer – By-products


Potential by-products from coconut wood harvesting and processing residues

Content

- Source and volume of residues
- Residues as growing medium
- Residues for biochar
- Residues as fuel.

Project objective 6 – By-products

Advanced veneer and other product from coconut wood

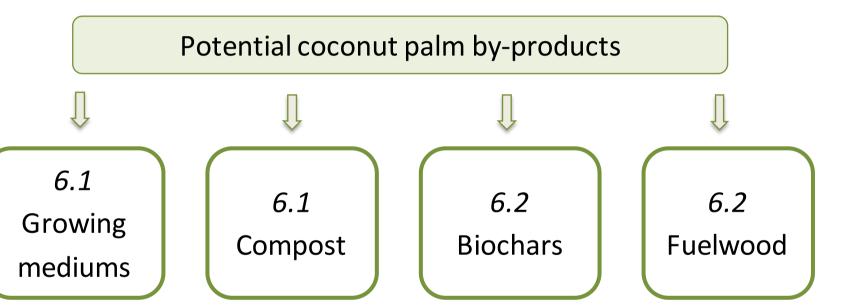
Objective 6 – By-products

Coconut palm harvesting residues

 Palm harvested for peeling trials (Savusavu, Vanua Levu. Fiji. 2015)

Objective 6 – By-products

Coconut log processing residues (Labasa, Vanua Levu. Fiji. 2014)


Objective 6 – By-products

Potential volume of harvesting residues

Years	Fiji 20 ha No. of palms	Fiji 20 ha Vol.m ³ of residue	Solomon Is. 20 ha No. of palms	Solomon Is. 20 ha Vol.m ³ of residue	Samoa 20 ha No. of palms	Samoa 20 ha Vol.m ³ of residue
Post immediate harvest	190	390	142	291	115	235
Post harvest year 5	171	351	180	369	115	235
Post harvest year 10	171	351	180	369	172	352
Post harvest year 15	171	351	180	369	172	352
Post harvest year 20	171	351	180	369	172	352
Post harvest year 25	171	351	180	369	172	352
Post harvest year 30	171	351	133	272	134	274
Post harvest year 35	171	351	133	272	134	274
Post harvest year 40	171	351	133	272	134	274
Post harvest year 45	171	351	114	233	134	274
Post harvest year 50	57	117	114	233	134	274
Post harvest year 55	57	117	114	233	134	274
Post harvest year 60	57	117	114	233	134	274

Nominal residues generated addressing senility with 5 yearly harvest and 60 year rotation,

Objective 6 – By-product utilisation

6.1
Growing mediums

Physical analysis of fine ground cocowood medium compared with coir media

Parameter	Cocowood (fine-ground)	Coir 1*	Coir 2*	Recommended range (Bodman and Sharman, 1993)
Air filled porosity	34.18%	16%	35%	5-20%
Water holding capacity	44.41%	35%	64%	>40%
Water retention efficiency	61.33%	46%	63%	No data
Wettability	55 seconds	<5 seconds	15 seconds	No data
Bulk density	0.09 (g/vol)	0.07	80.0	<1.2
рН	6.22	5.84	6.4	4.7-7
Electrical conductivity	1727μS/cm	629	2254 μS/cm	<700- 1800

*source: Poulter et al., 2009

Good mycellium growth through the substrate

Successful mushroom production, but poor yields

Advanced veneer and other product from coconut wood

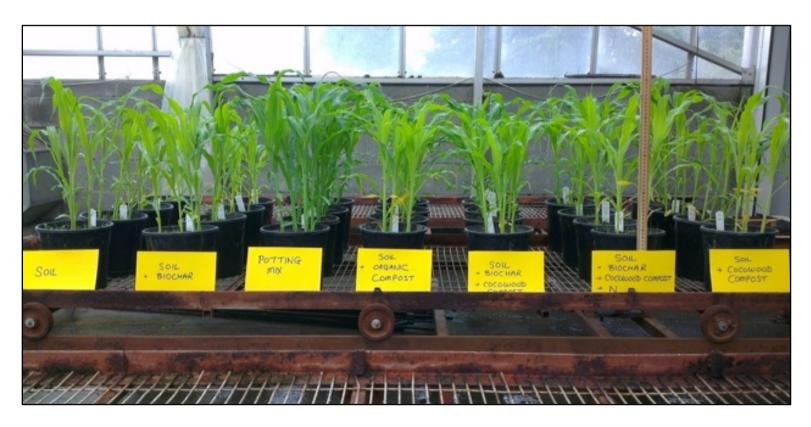
Plant growth trials were established to compare germination and growth rates of sweet corn

Australian Star		Required:	Sample 1 240393-Coconut Wood Chips CA-PACK-007 Premium AS 3743/2003	Requirment AS 3743/2003	Status
Nutrient		Units	E 3286/1	Potting Mix	
Air-filled Porosity		%	25	≥13	Pass
Total Water Holding Capa	city	%	42	≥50	Fail
Wettability		min	1m 20s	≤2	Pass
pH (1:1.5)		pH units	6.1	5.3 - 6.5	Pass
Electrical Conductivity (1:	1.5)	dS/m	5.4	≤2.2	Fail
Chloride	CI	mg/L	162	≤200	Pass
Ammonium	N	mg/L	2.75	≤100	Pass
Phosphorus	Р	mg/L	14	8 to 40	Pass
Potassium	Κ	mg/L	55	≥30	Pass
Sulfur	S	mg/L	8	≥40	Fail
Calcium	Ca	mg/L	28	≥80	Fail
Magnesium	Mg	mg/L	25	≥15	Pass
Ca:Mg Ratio		Ratio	1.1	1.5 to 10	Pass
K:Mg Ratio		Ratio	2.2	1 to 7	Pass
Sodium	Na	mg/L	511	<i>≤130</i>	Fail
Copper	Cu	mg/L	0.1	0.4 to 15	Fail
Zinc	Zn	mg/L	1.0	0.3 to 10	Pass
Manganese	Mn	mg/L	1.0	1 to 15	Pass
Boron	В	mg/L	0.07	0.02 to 0.65	Pass

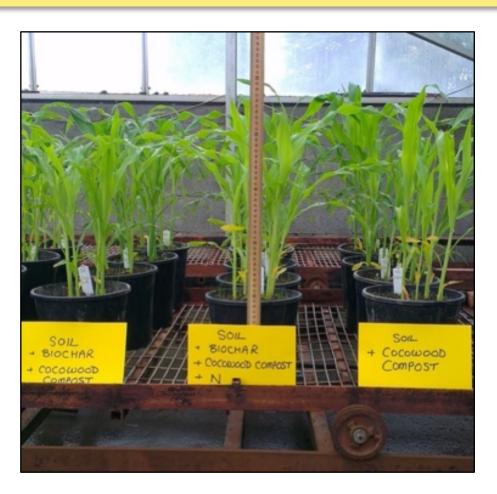
Advanced veneer and other product from coconut wood

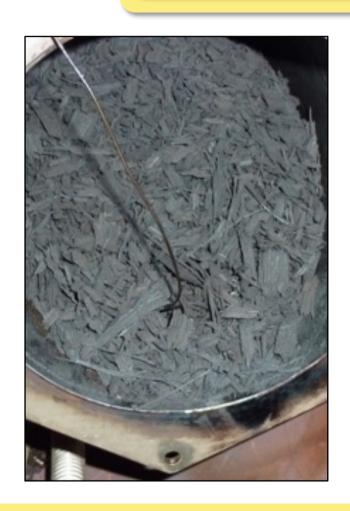
6.1 Compost

CSAW has trial composted coconut woodchip on a garden-scale to examine end-product properties.


Australian Star		Required: pplicable:	Sample 1 241254 Cocowood compost CA-PACK-006 Premium AS 3743/2003	Requirment AS 3743/2003	Status
Nutrient		Units	E 3286/1	Potting Mix	
Air-filled Porosity		%	NA		
Total Water Holding Capa	city	%	NA		
Wettability		min	NA		
pH (1:1.5)		pH units	7.3	5.3 - 6.5	Fail
Electrical Conductivity (1:	1.5)	dS/m	2.8	≤2.2	Fail
Chloride	CI	mg/L	97	≤200	Pass
Ammonium	N	mg/L	1.80	≤100	Pass
Phosphorus	Р	mg/L	78	8 to 40	Fail
Potassium	K	mg/L	280	≥30	Pass
Sulfur	S	mg/L	36	≥40	Fail
Calcium	Ca	mg/L	14	≥80	Fail
Magnesium	Mg	mg/L	9.8	≥15	Fail
Ca:Mg Ratio		Ratio	1.4	1.5 to 10	Pass
K:Mg Ratio		Ratio	28.6	1 to 7	Fail
Sodium	Na	mg/L	245	≤130	Fail
Copper	Cu	mg/L	0.4	0.4 to 15	Pass
Zinc	Zn	mg/L	0.4	0.3 to 10	Pass
Manganese	Mn	mg/L	0.2	1 to 15	Fail
Boron	В	mg/L	0.6	0.02 to 0.65	Pass

Composting coconut palm log harvest residues could be particularly useful for most site rehabilitation options




A second series of plant growth trials were established to again compare germination and growth rates of sweet corn - (Monocotyledon)

Also comparing plant growth and germination and growth rates in peas - (Dicotyledon)

6.2 Biochars

Biochars from the pyrolysis of coconut wood

Benefits from biochar are not universal

- Soil types respond differently
 Applying biochar to soils in the Pacific
 Islands may have beneficial effects
 - Increased crop productivity through higher nutrient use efficiency
 - A retention of nutrients limits nutrient leaching
 - An increase in water-holding capacity
 - A decrease in soil acidity

No statistically significant differences in mean corm weight between biochar treatments.

No consistent effects of initial feedstock, pyrolysis temperature, rate of biochar and priming.

6.2 By-products – Fuelwood

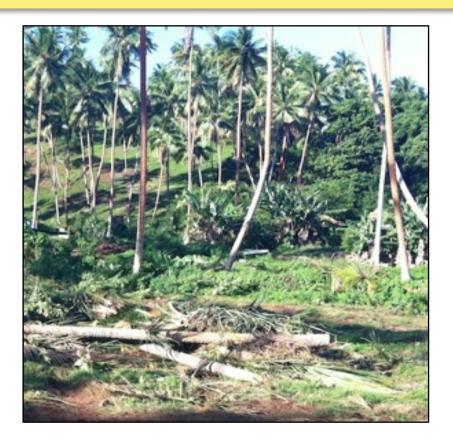
Table 3. A comparison of the energy content of various fuel types used across the South Pacific Islands (derived from Mario, R. 2000)

Fuel	Gigajoules per Tonne
Automotive Gasoline or Diesel	46
Liquid Petroleum Gas	49.4
Coconut Oil	38.4
Charcoal	30.0
Wood waste @ 40 % moisture content	10.8
Wood waste @ 12 % moisture content	17.1
Coconut palm wood	11.5
Coconut shell and husk	14.0
Sugar bagasse	9.7

6.2 By-products – Fuelwood

6.2 By-products – Fuelwood

For a jet-box veneer dryer processing approx. 75,000 cubic metres of veneer a year. A 20 MW biomass heat-plant requires approx. 30,000 tonnes wood residue.



6.2 By-products – In summary

- Coconut estate renewal and wood processing will generate significant residue volumes.
- Chipped coconut can be used as a base growing medium but alternatives have superior performance.
- Composted coconut appears to be performing very well against alternatives.
- Biochar trial was conducted but inconclusive.
- Increasing applications can exist for coconut fuelwood.

Composting and fuelwood can use high volumes of material.

Objective 6 By-products – Questions

